55 research outputs found

    Delays in IP routers, a Markov model

    Get PDF
    Delays in routers are an important component of end-to-end delay and therefore have a significant impact on quality of service. While the other component, the propagation time, is easy to predict as the distance divided by the speed of light inside the link, the queueing delays of packets inside routers depend on the current, usually dynamically changing congestion and on the stochastic features of the flows. We use a Markov model taking into account the distribution of the size of packets and self-similarity of incoming flows to investigate their impact on the queueing delays and their dynamics

    Estimation of traffic matrices for LRD traffic

    Get PDF
    The estimation of traffic matrices in a communications network on the basis of a set of traffic measurements on the network links is a well known problem, for which a number of solutions have been proposed when the traffic does not show dependence over time, as in the case of the Poisson process. However, extensive measurements campaigns conducted on IP networks have shown that the traffic exhibits long range dependence. Here two methods are proposed for the estimation of traffic matrices in the case of long range dependence, their asymptotic properties are studied, and their relative merits are compared

    On the nature and impact of self-similarity in real-time systems

    Full text link
    In real-time systems with highly variable task execution times simplistic task models are insufficient to accurately model and to analyze the system. Variability can be tackled using distributions rather than a single value, but the proper charac- terization depends on the degree of variability. Self-similarity is one of the deep- est kinds of variability. It characterizes the fact that a workload is not only highly variable, but it is also bursty on many time-scales. This paper identifies in which situations this source of indeterminism can appear in a real-time system: the com- bination of variability in task inter-arrival times and execution times. Although self- similarity is not a claim for all systems with variable execution times, it is not unusual in some applications with real-time requirements, like video processing, networking and gaming. The paper shows how to properly model and to analyze self-similar task sets and how improper modeling can mask deadline misses. The paper derives an analyti- cal expression for the dependence of the deadline miss ratio on the degree of self- similarity and proofs its negative impact on real-time systems performance through system¿s modeling and simulation. This study about the nature and impact of self- similarity on soft real-time systems can help to reduce its effects, to choose the proper scheduling policies, and to avoid its causes at system design time.This work was developed under a grant from the European Union (FRESCOR-FP6/2005/IST/5-03402).Enrique Hernández-Orallo; Vila Carbó, JA. (2012). On the nature and impact of self-similarity in real-time systems. Real-Time Systems. 48(3):294-319. doi:10.1007/s11241-012-9146-0S294319483Abdelzaher TF, Sharma V, Lu C (2004) A utilization bound for aperiodic tasks and priority driven scheduling. IEEE Trans Comput 53(3):334–350Abeni L, Buttazzo G (1999) QoS guarantee using probabilistic deadlines. In: Proc of the Euromicro confererence on real-time systemsAbeni L, Buttazzo G (2004) Resource reservation in dynamic real-time systems. Real-Time Syst 37(2):123–167Anantharam V (1999) Scheduling strategies and long-range dependence. Queueing Syst 33(1–3):73–89Beran J (1994) Statistics for long-memory processes. Chapman and Hall, LondonBeran J, Sherman R, Taqqu M, Willinger W (1995) Long-range dependence in variable-bit-rate video traffic. IEEE Trans Commun 43(2):1566–1579Boxma O, Zwart B (2007) Tails in scheduling. SIGMETRICS Perform Eval Rev 34(4):13–20Brichet F, Roberts J, Simonian A, Veitch D (1996) Heavy traffic analysis of a storage model with long range dependent on/off sources. Queueing Syst 23(1):197–215Crovella M, Bestavros A (1997) Self-similarity in world wide web traffic: evidence and possible causes. IEEE/ACM Trans Netw 5(6):835–846Dìaz J, Garcìa D, Kim K, Lee C, Bello LL, López J, Min LS, Mirabella O (2002) Stochastic analysis of periodic real-time systems. In: Proc of the 23rd IEEE real-time systems symposium, pp 289–300Erramilli A, Narayan O, Willinger W (1996) Experimental queueing analysis with long-range dependent packet traffic. IEEE/ACM Trans Netw 4(2):209–223Erramilli A, Roughan M, Veitch D, Willinger W (2002) Self-similar traffic and network dynamics. Proc IEEE 90(5):800–819Gardner M (1999) Probabilistic analysis and scheduling of critical soft real-time systems. Phd thesis, University of Illinois, Urbana-ChampaignGarrett MW, Willinger W (1994) Analysis, modeling and generation of self-similar vbr video traffic. In: ACM SIGCOMMHarchol-Balter M (2002) Task assignment with unknown duration. J ACM 49(2):260–288Harchol-Balter M (2007) Foreword: Special issue on new perspective in scheduling. SIGMETRICS Perform Eval Rev 34(4):2–3Harchol-Balter M, Downey AB (1997) Exploiting process lifetime distributions for dynamic load balancing. ACM Trans Comput Syst 15(3):253–285Hernandez-Orallo E, Vila-Carbo J (2007) Network performance analysis based on histogram workload models. In: Proceedings of the 15th international symposium on modeling, analysis, and simulation of computer and telecommunication systems (MASCOTS), pp 331–336Hernandez-Orallo E, Vila-Carbo J (2010) Analysis of self-similar workload on real-time systems. In: IEEE real-time and embedded technology and applications symposium (RTAS). IEEE Computer Society, Washington, pp 343–352Hernández-Orallo E, Vila-Carbó J (2010) Network queue and loss analysis using histogram-based traffic models. Comput Commun 33(2):190–201Hughes CJ, Kaul P, Adve SV, Jain R, Park C, Srinivasan J (2001) Variability in the execution of multimedia applications and implications for architecture. SIGARCH Comput Archit News 29(2):254–265Leland W, Ott TJ (1986) Load-balancing heuristics and process behavior. SIGMETRICS Perform Eval Rev 14(1):54–69Leland WE, Taqqu MS, Willinger W, Wilson DV (1994) On the self-similar nature of ethernet traffic (extended version). IEEE/ACM Trans Netw 2(1):1–15Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment. J ACM 20(1):46–61Mandelbrot B (1965) Self-similar error clusters in communication systems and the concept of conditional stationarity. IEEE Trans Commun 13(1):71–90Mandelbrot BB (1969) Long run linearity, locally Gaussian processes, h-spectra and infinite variances. Int Econ Rev 10:82–113Norros I (1994) A storage model with self-similar input. Queueing Syst 16(3):387–396Norros I (2000) Queueing behavior under fractional Brownian traffic. In: Park K, Willinger W (eds) Self-similar network traffic and performance evaluation. Willey, New York, Chap 4Park K, Willinger W (2000) Self-similar network traffic: An overview. In: Park K, Willinger W (eds) Self-similar network traffic and performance evaluation. Willey, New York, Chap 1Paxson V, Floyd S (1995) Wide area traffic: the failure of Poisson modeling. IEEE/ACM Trans Netw 3(3):226–244Rolls DA, Michailidis G, Hernández-Campos F (2005) Queueing analysis of network traffic: methodology and visualization tools. Comput Netw 48(3):447–473Rose O (1995) Statistical properties of mpeg video traffic and their impact on traffic modeling in atm systems. In: Conference on local computer networksRoy N, Hamm N, Madhukar M, Schmidt DC, Dowdy L (2009) The impact of variability on soft real-time system scheduling. In: RTCSA ’09: Proceedings of the 2009 15th IEEE international conference on embedded and real-time computing systems and applications. IEEE Computer Society, Washington, pp 527–532Sha L, Abdelzaher T, Årzén KE, Cervin A, Baker T, Burns A, Buttazzo G, Caccamo M, Lehoczky J, Mok AK (2004) Real time scheduling theory: A historical perspective. Real-Time Syst 28(2):101–155Taqqu MS, Willinger W, Sherman R (1997) Proof of a fundamental result in self-similar traffic modeling. SIGCOMM Comput Commun Rev 27(2):5–23Tia T, Deng Z, Shankar M, Storch M, Sun J, Wu L, Liu J (1995) Probabilistic performance guarantee for real-time tasks with varying computation times. In: Proc of the real-time technology and applications symposium, pp 164–173Vila-Carbó J, Hernández-Orallo E (2008) An analysis method for variable execution time tasks based on histograms. Real-Time Syst 38(1):1–37Willinger W, Taqqu M, Erramilli A (1996) A bibliographical guide to self-similar traffic and performance modeling for modern high-speed networks. In: Stochastic networks: Theory and applications, pp 339–366Willinger W, Taqqu MS, Sherman R, Wilson DV (1997) Self-similarity through high-variability: statistical analysis of ethernet lan traffic at the source level. IEEE/ACM Trans Netw 5(1):71–8

    Facilitating Joint Chaos and Fractal Analysis of Biosignals through Nonlinear Adaptive Filtering

    Get PDF
    Background: Chaos and random fractal theories are among the most important for fully characterizing nonlinear dynamics of complicated multiscale biosignals. Chaos analysis requires that signals be relatively noise-free and stationary, while fractal analysis demands signals to be non-rhythmic and scale-free. Methodology/Principal Findings: To facilitate joint chaos and fractal analysis of biosignals, we present an adaptive algorithm, which: (1) can readily remove nonstationarities from the signal, (2) can more effectively reduce noise in the signals than linear filters, wavelet denoising, and chaos-based noise reduction techniques; (3) can readily decompose a multiscale biosignal into a series of intrinsically bandlimited functions; and (4) offers a new formulation of fractal and multifractal analysis that is better than existing methods when a biosignal contains a strong oscillatory component. Conclusions: The presented approach is a valuable, versatile tool for the analysis of various types of biological signals. Its effectiveness is demonstrated by offering new important insights into brainwave dynamics and the very high accuracy in automatically detecting epileptic seizures from EEG signals

    Impact of the Topology of Global Macroeconomic Network on the Spreading of Economic Crises

    Get PDF
    Throughout economic history, the global economy has experienced recurring crises. The persistent recurrence of such economic crises calls for an understanding of their generic features rather than treating them as singular events. The global economic system is a highly complex system and can best be viewed in terms of a network of interacting macroeconomic agents. In this regard, from the perspective of collective network dynamics, here we explore how the topology of the global macroeconomic network affects the patterns of spreading of economic crises. Using a simple toy model of crisis spreading, we demonstrate that an individual country's role in crisis spreading is not only dependent on its gross macroeconomic capacities, but also on its local and global connectivity profile in the context of the world economic network. We find that on one hand clustering of weak links at the regional scale can significantly aggravate the spread of crises, but on the other hand the current network structure at the global scale harbors higher tolerance of extreme crises compared to more “globalized” random networks. These results suggest that there can be a potential hidden cost in the ongoing globalization movement towards establishing less-constrained, trans-regional economic links between countries, by increasing vulnerability of the global economic system to extreme crises

    Optimal design of measurements on queueing systems

    Get PDF
    We examine the optimal design of measurements on queues with particular reference to the M/M/1 queue. Using the statistical theory of design of experiments, we calculate numerically the Fisher information matrix for an estimator of the arrival rate and the service rate to find optimal times to measure the queue when the number of measurements are limited for both interfering and non-interfering measurements. We prove that in the non-interfering case, the optimal design is equally spaced. For the interfering case, optimal designs are not necessarily equally spaced. We compute optimal designs for a variety of queuing situations and give results obtained under the DD-- and DsD_s-optimality criteria

    Batch Renewal Process: Exact Model of Traffic Correlation

    No full text

    Estimation of Fractal Signals by Wavelets and GAs

    No full text

    Using Mathematics for Data Traffic Modeling Within an E-Learning Platform.

    No full text
    corecore